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ABSTRACT: A quadruplex system for determining the genetic
profile of an individual at four short tandem repeat (STR) loci has
recently been introduced into forensic casework by the Forensic
Science Service (FSS), primarily for the purposes of forensic iden-
tification. Data have been collected under this system from the three
racial groups of most relevance in casework in the UK: Caucasian,
Afro-Caribbean and Asian (from the Indian subcontinent). These
data are utilized in calculations to quantify the evidential strength of
a DNA match between suspect and crime scene sample, say,
through the evaluation of a likelihood ratio (LR). Previous papers
(1,2) have studied the databases via classical statistical methods.
However, we focus on a Bayesian approach (3) to validation of the
data for LR evaluation in two main cases: when individuals being
compared are either (i) completely unrelated, or (ii) members of the
same racial group subpopulation. Empirical studies are conducted
to establish the robustness of proposed models and obtain efficient
and adequate approximations to the LR calculations. This involves
the use of statistical simulation methods to determine the suitability
of the product rule and Bayesian inference for coancestry coeffi-
cients in the absence of subpopulation data.

KEYWORDS: forensic science, STR markers, Bayesian statistics,
likelihood ratio, product rule, population heterogeneity

When DNA evidence is presented in court, it is usually quanti-
fied in terms of a match probability or likelihood ratio (LR). There
has been much discussion in the literature on the appropriate
method of evaluating these quantities (4,5) and this will typically
involve the use of a measure, u, representing the level of coances-
try within a population. The recent NRC (National Research Coun-
cil) report (4), which provides U.S. guidelines for the evaluation of
forensic DNA evidence, suggests adopting a value of u 5 0.03 for
all racial groups in conjunction with newly-introduced PCR-based
systems (Recommendation 4.1). In this paper we aim to explore the
validity of the NRC recommendation for UK data collected from
the three main racial groups by the Forensic Science Service (FSS)
under a quadruplex (4-locus) STR profiling system (6). These par-
ticular data have been analyzed elsewhere using conventional sta-
tistical methods (1,2). We focus here on a Bayesian approach to the
problem, based on ideas developed in an earlier paper (3).

We use x as generic notation for the STR profile of an individ-
ual typed at M loci. In this paper, we restrict attention to applica-
tions of forensic identification; i.e., what evidence exists to suggest

that a suspect (S) standing trial is the offender (O) in a criminal in-
cident? If we let xs denote the STR profile of the suspect and xo de-
note the STR profile of the offender, then a match occurs if these
are equal since there are no complicating factors such as measure-
ment error and coalescence with STRs. The strength of evidence in
support of the prosecution hypothesis that offender and suspect are
the same person versus the alternative that they are different indi-
viduals is then represented by the likelihood ratio:

If the profiles xo and xs do not match, we obtain a LR of 0. Con-
versely, if we observe matching profiles, the form of the LR re-
duces to

LR(x) 5

The denominator is referred to as the conditional match probability
of x and this relates to the case where offender and suspect are dif-
ferent individuals. Clearly, this probability will be influenced by
how closely these two individuals are related; e.g., at one extreme,
the match probability will be relatively high when comparing two
brothers since they are likely to share very similar genetic charac-
teristics (7) and, in this case, the evidence provided by a match is
not as persuasive as when offender and suspect are completely un-
related. We focus on validation of the quadruplex data for comput-
ing LRs in two important cases: (i) offender and suspect are com-
pletely unrelated, and (ii) offender and suspect are members of the
same inbreeding racial group subpopulation.

In the next section we address case (i), where the LR may be
evaluated via the well-known product rule, provided checks are
made on the suitability of the underlying independence assump-
tions. One possible robustness check is detailed which investigates
how LR distributions are affected. A Bayesian approach to LR cal-
culations in case (ii) is then provided and this is based on making
inference about coancestry coefficients when data relating to ap-
propriate identified subpopulations is unavailable. Finally, results
are presented from implementation of these methods for the FSS
quadruplex data, including suggestions for the simplification of
techniques which are suitably robust in a forensic setting.

Comparison of Completely Unrelated Individuals

Let us assume the offender belongs to a particular racial group
P. If the suspect and offender are taken to be distinct and geneti-
cally unrelated either within P or as members of different racial
groups then this may be considered equivalent to assuming their
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profiles are independent of each other. Thus, the match probability
in this case simply corresponds to the proportion of the profile x in
P; i.e., p(xo 5 x|xs 5 x, O Þ S) 5 p(xo 5 x). It is then standard
practice to assume that Hardy-Weinberg and linkage equilibrium
conditions are satisfied so that alleles are inherited independently
both within and across loci. The product rule may then be invoked
to evaluate complete profile probabilities by essentially multiply-
ing together component genotype probabilities. At a single locus,
these are evaluated as

5gj
2 , for the homozygote (Aj, Aj)

2gjgk , for the heterozygote (Aj, Ak)
(1)

where gj and gk denote the proportions of alleles Aj and Ak, respec-
tively, as exhibited in the racial group P. Terms such as (1) are then
multiplied across all M loci. Henceforth, we shall refer to this as the
independence model. In real human populations, of course, the ide-
alized assumptions necessary for Hardy-Weinberg and linkage
equilibrium to hold exactly never exist and the essential forensic is-
sue is to determine whether (incorrect) use of the independence
model could give results which might mislead a court. This is ad-
dressed in the following sections.

LR Evaluation

Let D 5 {x1,x2, . . . , xn} denote the dataset of STR profiles from
n individuals drawn from the racial group of interest, P. Even
though such databases are often compiled using convenience sam-
ples of individuals, it is usually argued that the underlying genetic
samples are effectively random (see Chapter 5 of (4)). Assuming
that the within- and between-locus allele independence assump-
tions hold, our earlier paper (3) describes two methods for evaluat-
ing LRs: (a) plug-in estimates, and (b) full Bayesian analysis.

Under the plug-in estimate approach (a), the proportion of each
allele is estimated by its relative frequency in the observed dataset
D, where the suspect’s profile xs 5 x is temporarily added to the
appropriate racial group database as an extra piece of relevant data
which has been observed. The relative frequency estimates, g, are
then substituted in (1) and multiplied across loci to obtain the prob-
ability of the profile x and, hence, by inversion, the corresponding
LR.

In general, the Bayesian approach represents our uncertainty
about an unknown quantity (the set of allele distributions at each
locus, g, say) through an entire probability distribution. Before ob-
serving any data, we may have certain beliefs about the specifica-
tion of g based on other studies, intuition, etc. These are repre-
sented by the prior distribution, p(g). The likelihood, p(D|g), is a
function which then explains how the data behave described in
terms of g. In our case, this will be in the form of a product of pro-
file probabilities, one for each individual observed in the dataset D,
including the suspect if (s)he is a member of P. After observing the
data, we update our beliefs about g via Bayes’ theorem and obtain
the posterior distribution, p(g|D):

p(g|D) ~ p(g) 3 p(D |g) (2)

This represents a weighted combination of the data (through the
likelihood) and our prior beliefs. If we adopt independent uniform
priors for the allele distributions at each locus in g, this can be in-
terpreted as representing prior ignorance. The posterior distribu-
tions resulting from expression (2) can then be shown to be inde-
pendent and of a standard form (i.e., the so-called Dirichlet
distribution). Thus, if m denotes the number of distinct alleles ex-

hibited at a particular locus, the corresponding posterior distribu-
tion has the form:

P
m

k51
gk

hk

where hk denotes the number of times the allele Ak is observed in
the dataset D, after inclusion of the suspect’s profile in his racial
group database. Therefore, under the Bayesian approach (b), the
posterior probability of profile x may be found by integrating ex-
pression (1) with respect to the posterior of the allele distribution at
each locus and then multiplying across loci. The term correspond-
ing to a single-locus genotype is given by

5 , for the homozygote (Aj, Aj)

2 , for the heterozygote (Aj, Ak) (3)

if the suspect does not belong to the racial group P under consid-
eration, and the same expression (3) with n replaced by n 1 1, if P
does correspond to the suspect’s racial group. The Bayesian esti-
mate, using (3), of the probability of profile x in P can be shown
algebraically and empirically to approximate the plug-in estimate
with the suspect’s profile being added twice to the database corre-
sponding to his racial group and once to the remaining racial group
databases (sometimes referred to as the sampling/size-bias correc-
tion). For example, if P corresponds to a racial group different
from the suspect’s, the heterozygote expression (3) can be approx-
imated by the plug-in estimate with the suspect’s profile temporar-
ily added once to the corresponding database; i.e.
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since typically n..m.

A Simple Test to Check the Robustness of LR Distributions to
Allele Independence Assumptions

The independence model involves the multiplication of (1) or (3)
across loci and we must show that, within the three racial groups of
interest, the assumption of within- and between-locus indepen-
dence of alleles does not result in misleading LR calculations. Clas-
sical statistical significance tests that check adherence to this null
“independence” hypothesis are commonly applied; in particular,
the exact test (8). However, the idealized concepts of Hardy-Wein-
berg and linkage equilibrium and, hence, the independence as-
sumptions are never realized in real populations, due principally to
the presence of substructure caused by preferred mating of indi-
viduals within subpopulations. In forensic applications, we are
more interested in the practical consequences of adopting (1) and
multiplying across loci as a simplified model for evaluating profile
probabilities and judge the adequacy of this model based on two
different criteria. The first, which we study in the remainder of this
section, looks at the effect in terms of an aggregate LR measure
which has been employed as an illustrative tool in court to explain
the discriminatory power of reported DNA matches. The second
criterion is addressed later and investigates the effect on individual
LRs of adopting what may be considered a more realistic model for
LR evaluation.

Our aim in this section is to compare the distribution of STR pro-
files in the racial group of interest P with those seen in “equivalent”

(1 1 hj)(1 1 hk)
}}}
(m 1 2n)(1 1 m 1 2n)

(1 1 hj)(2 1 hj)
}}}
(m 1 2n)(1 1 m 1 2n)
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idealized populations, artificially constructed so that alleles are truly
independent within and between loci. This may be achieved via
comparison of the profile distributions observed in datasets repre-
senting such populations as these provide estimates of the underly-
ing population profile distributions. Since the STR profile distribu-
tion is discrete and defined over a very large number of possible
profiles, it is more feasible to make comparisons by means of the
corresponding distribution of LRs (which are the quantities of
forensic interest) for profiles in each dataset where these are evalu-
ated using the independence model (1). We extend and develop an
idea here which has been applied previously (2,9).

The distribution of LRs exhibited by profiles in the observed
database D computed using the independence model via (1) may be
obtained and compared with those distributions typically exhibited
under equivalent databases which have been constructed to satisfy
the independence assumptions exactly. Such LR distributions may
be constructed under two different scenarios: (i) suspect and of-
fender are the same individual, and (ii) suspect and offender are dif-
ferent individuals. For any database of profiles from n individuals,
we can simulate cases where suspect and offender are the same per-
son by looking at all “within-person” comparisons. We have n such
cases and, by computing the LR corresponding to a matching pro-
file equal to each of these n individual profiles, the associated LR
distribution exhibited by the database may be obtained. Similarly,
cases where suspect and offender are different persons may be sim-
ulated by performing all n(n 2 1)/2 pairwise “between-person”
comparisons of individuals represented in the database. A match is
declared when both individuals being compared have identical pro-
files, in which case the LR associated with the shared profile is
recorded. When the two profiles do not match, a LR of 0 is
recorded. Under both these scenarios, curves may be constructed
that describe the underlying LR distribution exhibited by the
database profiles by plotting “the proportion of cases with LR . l”
vs. “l”, for various values of l, in an analogous way to cumulative
probability distributions. These plots are sometimes referred to as
Tippett diagrams (10).

The LR curves may be plotted based on the observed dataset of
n profiles and, similarly, for equivalent databases of size n which
are artificially generated to ensure they satisfy the independence
assumptions exactly. The independence model computes LRs cor-
rectly for profiles in such databases. Under the plug-in estimate ap-
proach (a), each new database of n profiles, D*, is constructed by
independently generating alleles at each locus according to the es-
timated allele proportions in ĝ. In this sense, D* is “equivalent” to
the observed database, D, since it is of the same size and originates
from the same set of allele distributions. Under the Bayesian ap-
proach (b), we generate a particular set of allele distributions, g*,
from the posterior distribution p(gD) and construct the new
database D* conditional on this set of allele distributions, as for ap-
proach (a). This procedure may be repeated T times to obtain a rep-
resentative sample of LR curves typical of those we would expect
to see in population datasets satisfying the allele independence as-
sumptions exactly. In particular, the 5th and 95th percentile LR
curves may be plotted and compared with the “observed” LR
curves.

The purpose of this exercise is simply to construct a typical set
of population databases satisfying the independence model exactly
and compare the resulting LR curves with those obtained from the
observed database in order to detect any meaningful differences
which might signal the inappropriateness of the allele indepen-
dence assumptions. Such LR curves are very useful in illustrating
the discriminating power of reported STR matches, as well as for

placing reported LRs in context relative to the full LR distribution.
Thus, we wish to check that there is no major discrepancy in prac-
tical terms between the observed LR curves and the set of curves
resulting from datasets artificially constructed from the indepen-
dence model, expression (1). See (10) for a more detailed discus-
sion of the interpretation of Tippett diagrams.

Comparison of Members of the Same Subpopulation

Consider the case where offender and suspect are distinct mem-
bers of the same racial group subpopulation. We take subpopula-
tions to refer to groups of finite size whose members have a ten-
dency to mate amongst themselves rather than completely
randomly within the entire racial group. This pattern of breeding
may cause allele distributions to vary across the different subpop-
ulations. However, data relating to specific subpopulations are gen-
erally unavailable and naive use of the independence model via ex-
pression (1) with allele distributions estimated from the entire
racial group will tend to overstate the strength of the DNA evidence
when comparing individuals from the same subpopulation. In an
attempt to remedy this situation and in the absence of appropriate
subpopulation data, we may implement the formula of Balding and
Nichols (11,12) which expresses the match probability in this case
as a product across loci of single-locus match probabilities given
by

5 , for the homozygote (Aj, Aj)

, for the heterozygote (Aj, Ak)

(4)

where u denotes the coancestry between individuals in a subpopu-
lation. We note that this approach is endorsed by the new NRC
guidelines (4).

We thus have an explicit formula for the match probability asso-
ciated with the profile x in terms of the two unknown quantities, u
5 (u1, u2, . . ., uM), the set of coancestry coefficients at each of M
loci, and g, the set of racial group allele distributions. The full
Bayesian approach then involves finding the posterior distribution
for u and g given data, D, from the suspect’s racial group, p(u,
g|D), with respect to which (4) is integrated to yield match proba-
bilities and, by inversion, LRs. The method adopted here to imple-
ment this Bayesian approach in the absence of appropriate subpop-
ulation data was originally proposed by Roeder et al. (13) and this
was subsequently adapted and developed further in (3).

In order to specify the likelihood term, p(D|u, g), we first intro-
duce what we refer to as the substructure model. At each locus, a
probability model (e.g., see (14)) is adopted which is often used to
describe the process by which genotypes are generated within an
inbreeding racial group subpopulation:

5ugj 1 (1 2 u)gj
2, for the homozygote (Aj, Aj)

2(1 2 u)gjgk , for the heterozygote (Aj, Ak) (5)

Note that we have made the further assumption that individuals
within subpopulations mate at random, in which case the inbreed-
ing coefficient in (5) equates to the coancestry, u. Thus, the sub-
structure model offers an alternative method for calculating the
probability of profile x within a racial group subpopulation ex-
hibiting allele distributions different from g in P; i.e., by multiply-
ing together terms such as (5) across loci.

2[u 1 (1 2 u) gj][u 1 (1 2 u) gk]
}}}}

(1 1 u)(1 1 2u)

[2u 1 (1 2 u)gj][3u 1 (1 2 u) gj]
}}}}

(1 1 u)(1 1 2u)



As in the previous section, we may then define the likelihood
term, p(D|u, g), to be a product of n profile probabilities, one for
each individual in the database, using the substructure model via
(5). In our earlier paper (3), we refer to this special case as the pro-
file-product likelihood and u may then be interpreted as a “com-
bined” coancestry measure which applies to typical subpopulations
of P.

From Bayes’ theorem in expression (2), given a prior distribu-
tion, p(u, g), the posterior distribution is then given by p(u, g|D) ~
p(D|u, g)p(u, g), which is a complicated expression in terms of u
and g. Thus, the posterior match probability of any profile x cannot
be found directly by integration of (4) for each locus. However, the
Gibbs sampler (15) is a statistical simulation strategy which can be
applied iteratively to generate a sample of values from virtually any
distribution, such as a sample for u and g from the posterior distri-
bution p(u, g|D). We may then estimate the value of any posterior
quantity, f(u, g) (the match probability of x, say, using (4)), in the
form of an average across this posterior sample. The Appendix of
(3) provides a detailed description of the Gibbs sampling strategy
which applies under adoption of the profile-product likelihood and
this is implemented in the analyses of the following section.

Results

The original quadruplex data, typed at 1. VWA, 2. THO1, 3.
F13A1, 4. FES, were compiled from a number of different sources
as described in reference (2). Comparisons of allele distributions

described in (1) show very little variation between samples within
racial groups and, hence, the decision to combine the data into three
databases representing the three racial groups. The datasets ana-
lyzed in this section are compiled from all complete 4-locus pro-
files contained in the source data; i.e., the final database sizes, n,
are 1400 (Caucasian), 533 (Afro-Caribbean), 556 (Asian) and 2489
(mixed population). The combination of all three racial groups
forms a single database representing a substructured mixed popu-
lation and this will be useful for comparison purposes later in the
section.

Investigation of the Independence Model Using LR Curves

We first check whether adopting the independence model to
compute LRs is valid when comparing completely unrelated indi-
viduals. This is achieved, under the first criterion that investigates
the effect on LR distributions, by implementing the LR curve com-
parisons described earlier.

Initially, we consider the plug-in approach where allele propor-
tions in g are fixed to be their empirical plug-in estimates in g. Fig-
ure 1 gives the LR curve plots under within- and between-person
comparisons resulting from analysis of the Caucasian data. These
are based on a sample of T 5 10 000 databases generated accord-
ing to the independence model, which was found to be sufficient
for adequate estimation of the distribution of resulting LR curves.
The unbroken lines correspond to curves for the observed dataset
D and the dotted lines represent upper 95th and lower 5th per-
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FIG. 1—CAUCASIAN: comparison of observed LR curves (—) with the 5th and 95th percentile curves (...) constructed from a sample of T 5 10 000
databases generated from the independence model.
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centile curves obtained from datasets generated according to the in-
dependence model; i.e., the dotted lines define an “envelope”
within which LR curves corresponding to the artificially-con-
structed databases will lie 90% of the time.

The top graph presents LR curves in the case where suspect and
offender are the same person. We see that the observed curve lies
well within the dotted line envelope. The graph indicates that when
comparing profiles from the same individual, we always expect to
obtain a LR value greater than 1000 and, furthermore, in about 65%
of cases, it is likely to be greater than 10 000. Arguably, the bottom
graph corresponds to the situation of most interest to us; i.e., when
suspect and offender are not the same person. In the observed
database, 118 from a total of 979 300 between-person comparisons
resulted in a match, which translates to just over 12/100 000 cases
in which the LR . 0. We see that this conclusion is not atypical of
databases constructed from the independence model. Furthermore,
a LR value greater than 10 000 is only likely to be observed for
about two or three cases in every 100 000 when the suspect is not
the offender and the population satisfies the independence assump-
tions; this is in agreement with the interpretation resulting from the
observed curve. It can be seen, therefore, that the discriminating
power of STR matches under the quadruplex profiling system is
clearly illustrated by investigation of the LR distributions and the
conclusions drawn from studying the observed curve are practi-
cally indistinguishable from those exhibited by databases satisfy-
ing the independence model exactly.

Similar conclusions can be drawn from the graphs obtained for
the Afro-Caribbean and Asian data, not shown here; e.g., observed

LR curves lie within the 5th and 95th percentile dotted line bounds,
although the LR distributions differ slightly in shape (see (2) for the
observed LR curves). For reference, we note that additional analy-
ses were carried out on “observed” datasets simulated from models
in which substantial allele dependencies were induced and for
which adopting the independence model would be inappropriate.
The observed LR curves were located very clearly outside the in-
dependence envelopes in these cases.

Thus, our analyses suggest that adopting the simplifying as-
sumptions of within- and between-locus independence of alleles,
when comparing completely unrelated individuals, yields LR dis-
tributions which are robust to the levels of deviation from these as-
sumptions that actually occur in practice; i.e., observed LR curves
yield practically the same conclusions when used to establish the
discriminating power of a match as LR curves typical of databases
generated under the independence model. Furthermore, LR curve
plots obtained using the Bayesian approach and expression (3) to
calculate profile probabilities are virtually identical to those de-
scribed above and, thus, fully support the robustness claims made
under the plug-in approach.

Inference for the Coancestry Coefficient u

In the first instance, we consider the case where allele propor-
tions in g are fixed to be their empirical estimates in g. We adopt a
Beta(1.5,50) prior for uj at each locus j (3). This is a standard sta-
tistical distribution defined on the interval [0,1] which is unimodal
and assigns zero density to a value of 0 or 1. It represents prior be-

FIG. 2—CAUCASIAN: comparison of prior (...) and posterior (—) distributions for u.
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liefs that the coancestry coefficient u at any locus probably lies
somewhere between 0 and 0.075, with density concentrated about
median and mean values of 0.023 and 0.029, respectively. Prior
specification was based partly on theory (i.e., the magnitude of
coancestry values for close blood relatives) and partly on prior em-
pirical evidence from other STR studies. Since higher u values
yield greater match probabilities in expression (4), it was deemed
preferable (more conservative) to assume stronger prior beliefs
about larger (and yet realistic) u values than we truly believed be-
fore observing the data, since this will tend to yield weaker evi-
dence against the suspect; i.e., we start from a position that is aimed
at being defensible in court while not unrealistically detracting
from the power of the STR profiling technique.

The Gibbs sampler was run for 30 000 iterations on each racial
group database. Posterior distributions based on the Caucasian data
and reconstructed from the entire posterior sample for u are given
in Fig. 2. These tend to be more concentrated about lower values
for the uj’s than the priors. This general observation is confirmed
by inspection of the posterior distributions for all three racial
groups as summarized in Table 1 and supports our claim that prior
specifications were conservative. Furthermore, we may compare
Table 1 with the analogous posterior distribution summaries pre-
sented in Table 3 of (13), noting that these authors perform analy-
ses on the basis of VNTR (variable number tandem repeat) loci and
adopt a tighter Beta(1,49) prior about the lower mean of 0.02 for
each uj. Within the Caucasian group, for example, databases ana-
lyzed by Roeder et al. in (13) are 2000 to 3000 profiles in size,
yielding posterior medians in the range 0.001 to 0.0035. These are
much lower and more similar to values for coancestry measures ob-
served elsewhere in the literature (1) than those obtained based on
our Caucasian database of size 1400. Since allele mutation rates
tend to be higher at VNTR loci than STR loci, lower u values are
to be expected, although this provides only a partial explanation for
the differences. An additional factor is that the STR databases stud-

ied here do not have the power (in terms of volume of data) to com-
pletely overwhelm the conservative priors. Furthermore, by in-
spection of Table 1 in (1), which analyzes STR datasets similar to
ours, we observe that lower levels of heterozygosity tend to corre-
spond to racial group/locus combinations that exhibit higher uj val-
ues in Table 1 of this paper. This is to be expected since greater lev-
els of population substructure yield greater levels of homozygosity.

This point is further supported by inspection of the posterior dis-
tribution summaries for the mixed population, where the database
size in this case is 2489. We would expect the levels of subpopula-
tion coancestry and inbreeding to be much greater within the mixed
population than within each of its component racial groups. Thus,
the posterior distribution of uj at each locus for the mixed popula-
tion may be thought of as an “upper bound” for its constituent
groups considered separately. Therefore, the high values yielded at
the FES and VWA loci within the Asian group in particular might
be considered a result of insufficient data.

To facilitate comparisons across loci and between populations, it
is useful to have single posterior summaries of uj at each locus. We
recommend the use of posterior means for reasons that will become
clear in the next section. A single summary measure of the full pos-
terior distribution for u chosen to represent the general level of
coancestry exhibited within a population is then given by the mean
value of uj averaged across loci; this allows easy comparison with
values obtained in other studies. From Table 1, the quadruplex data
are suggesting values of approximately 0.014 (Caucasian), 0.015
(Afro-Caribbean) and 0.02 (Asian).

Calculation of LRs

Recall that we may express the match probability for two mem-
bers of the same subpopulation in terms of u and g using the for-
mula (4). As noted at the end of the previous section, the correct
Bayesian approach evaluates the probability of a match x by aver-
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TABLE 1—Prior and posterior distribution summaries for u.

Locus 5th Percentile Median Mean 75th Percentile 95th Percentile

Prior
All loci 0.0035 0.0233 0.0291 0.0401 0.0748

Caucasian
VWA 0.0017 0.0094 0.0107 0.0149 0.0240
THO1 0.0015 0.0083 0.0097 0.0133 0.0223
F13A1 0.0022 0.0126 0.0141 0.0196 0.0311
FES 0.0039 0.0186 0.0200 0.0273 0.0410
Average 0.0123 0.0136

Afro-Caribbean
VWA 0.0029 0.0156 0.0175 0.0239 0.0389
THO1 0.0027 0.0159 0.0181 0.0252 0.0408
F13A1 0.0019 0.0112 0.0130 0.0179 0.0302
FES 0.0013 0.0081 0.0099 0.0138 0.0249
Average 0.0127 0.0146

Asian
VWA 0.0035 0.0185 0.0205 0.0282 0.0448
THO1 0.0015 0.0095 0.0112 0.0156 0.0271
F13A1 0.0018 0.0118 0.0138 0.0190 0.0329
FES 0.0083 0.0313 0.0331 0.0440 0.0645
Average 0.0178 0.0197

Mixed
VWA 0.0048 0.0158 0.0164 0.0213 0.0297
THO1 0.0060 0.0189 0.0195 0.0254 0.0351
F13A1 0.0166 0.0314 0.0316 0.0377 0.0473
FES 0.0081 0.0213 0.0217 0.0274 0.0369
Average 0.0219 0.0223
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aging (4) across the sample of u values from the posterior distribu-
tion for each locus and then multiplying. Alternatively, a simple
approximation substitutes a suitable posterior value for u in the
match probability formula—the so-called “plug-in” approach. To
investigate the effect on individual LR values, we may compute the
LR corresponding to each profile observed in a database under both
methods and compare.

For the Caucasian data, Fig. 3 gives scatterplots of “the LR eval-
uated under the Bayesian approach” versus “the LR evaluated un-
der the plug-in approach” for each profile in the database. It can be
seen that LR values are practically indistinguishable from those ob-
tained under Bayesian integration for the majority of profiles (i.e.,
points lie close to the “x 5 y” line) when posterior mean estimates,
as opposed to posterior medians (13), say, are substituted for the
uj’s under the plug-in approach. Furthermore, we see that as match-
ing profiles become rarer, absolute differences between LRs com-
puted under the two methods will increase, although such discrep-
ancies tend only to be large for very rare profiles composed largely
of homozygotes. These results are confirmed by inspection of the
most extreme cases where LRs are computed for the rarest (com-
posed entirely of homozygotes) and commonest profiles identified
under independence assumptions (see Table 2).

From the above analyses, the mean of u at each locus contains all
the information from the posterior distribution which is necessary
for evaluating match probabilities and, thus, LRs, our ultimate aim.
On this basis, the posterior mean would seem to represent a suitable
summary measure for population coancestry levels.

Results Under the Full Bayesian Approach

A full Bayesian analysis may be conducted where we represent
our uncertainty about g in addition to u through a posterior distri-
bution. With the adoption of flat (uniform) priors for the allele dis-
tribution at each locus in g, which may be interpreted as represent-
ing prior ignorance about g, the posterior distribution of u is little
changed from that given in Table 1 when g 5 ĝ. Furthermore, the
posterior mean estimate of the allele distribution at each locus for
each racial group is almost indistinguishable from its empirical es-
timate as given by ĝ and constructed from the observed databases.
As in the calculation of LRs section, substitution of posterior mean

FIG. 3—CAUCASIAN: scatterplots of LRs under the Bayesian vs. plug-in methods.

TABLE 2—LRs computed under the Bayesian and plug-in methods for
the rarest and commonest profiles.

Plug-in Estimates
Profile Bayesian Mean Median

Caucasian
Rarest 2.659 3 1011 8.354 3 1011 2.032 3 1012

Commonest 907 907 916
Afro-Caribbean

Rarest 8.218 3 1010 3.620 3 1011 1.090 3 1012

Commonest 2114 2113 2155
Asian

Rarest 2.223 3 1010 7.421 3 1010 1.847 3 1011

Commonest 1628 1626 1654
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FIG. 4—Histograms plotting the distribution of the ratio of LR values calculated under the independence vs. substructure model.



486 JOURNAL OF FORENSIC SCIENCES

estimates for both u and g in the formula (4) adequately approxi-
mates the full Bayesian match probability calculations.

Comparison of the Independence and Substructure Models

Previously, we introduced the substructure model (5) from which
we constructed the likelihood term used to draw inference about u
values. It was noted then that this model could be adopted as a, pos-
sibly more realistic, alternative to the independence model (1) when
evaluating STR profile probabilities; i.e., by incorporating the ef-
fects of population substructure through subpopulation coancestry
levels. Thus, the substructure model (5) may be used in LR calcula-
tions when comparing individuals who are unrelated. The difference
in LR values resulting from adoption of model (1) in place of the
more realistic model (5) then provides a further criterion, in addition
to the LR distribution comparisons, by which the appropriateness of
allele independence assumptions in this case may be judged. Thus,
for each profile observed in the racial group datasets, LRs may be
evaluated using both (1) and (5), substituting ĝ for the allele distri-
butions and posterior means estimated for the uj’s as given in Table
1. For STR profiles contained in the quadruplex datasets, Fig. 4
shows that adopting the independence model yields LRs that tend to
be less than 1.3 times their corresponding value under the substruc-
ture model. We note that within each dataset, there were 2 to 4 pro-
files which yielded a ratio greater than 1.3 but these were removed
for the purposes of plotting the histograms. Furthermore, it can be
seen that in more than 50% of cases, the independence model results
in lower, and thus more conservative, LR values—these correspond
to profiles that are largely heterozygous in nature. This is due to the
fact that genotype probabilities are higher under model (1) as com-
pared with model (5) for heterozygotes.

Thus, for substructure levels observed in our quadruplex data,
the simple independence model provides an adequate approxima-
tion to the more realistic substructure model. This serves to support
the evidence of the LR curve comparisons described earlier, i.e.,
the practical effect of observed levels of substructure on both indi-
vidual LR values and population LR distributions computed under
the independence model is negligible when comparing completely
unrelated individuals.

Discussion

Bayesian analyses conducted on the quadruplex datasets dis-
cussed in this paper serve to validate their use in quantifying STR
evidence for identification purposes. The approach adopted to eval-
uate LR values when a match occurs necessarily changes accord-
ing to the assumed relationship between suspect and offender if
they are not the same person.

In the first case, we might consider suspect and offender to be
completely unrelated individuals whose STR profiles happen to
match. We are then reduced to evaluating a proportion for the
matching profile within the racial group of possible offenders. This
can be done via the independence model, even though the idealized
conditions necessary for exact allele independence never hold in
real populations. It has been shown that distributions of LRs esti-
mated using the independence model for profiles in the three ob-
served racial groups are practically the same as those typically seen
in equivalent populations within which the independence model is
truly valid. Furthermore, individual LRs are robust to the indepen-
dence assumptions when compared with what might be considered
a more realistic substructure model. All the analyses provide sup-
port for use of the simplified model in casework.

When circumstances of a case make it reasonable to assume the
suspect and offender are members of the same racial group sub-
population, the NRC report (4) recommends the adoption of Bald-
ing and Nichols’ (11,12) conditional match probability expression
(4). This necessitates making inference about typical subpopula-
tion coancestry measures, u. Adopting a Bayesian approach is use-
ful in allowing the incorporation of prior information about plausi-
ble u values based on other studies of STR data as well as
population genetics theory. General levels of subpopulation
coancestry estimated from the quadruplex data were 0.014 (Cau-
casian), 0.015 (Afro-Caribbean) and 0.02 (Asian). Furthermore,
simply substituting posterior mean values of u in the match proba-
bility formula (4) was shown to provide a simple and adequate ap-
proximation to full Bayesian integration for use when LRs are cal-
culated in practice. Therefore, our analyses based on identifying
general coancestry levels within the main UK racial groups suggest
that routine use of a value of u 5 0.03 in LR calculations, as rec-
ommended in the NRC guidelines (4), will tend to understate the
DNA evidence in cases where the suspect and offender are as-
sumed to be distinct members of a typical UK subpopulation.
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